Junyeop Kim

Curriculum Vitae

Personal Informations

Citizenship : Republic of Korea Born : November 21st, 2001 in Seoul, Republic of Korea Address : 132, Magokseo 1-ro, Gangseo-gu, Seoul, Republic of Korea (postal : 07598) Email : f4june777@konkuk.ac.kr Website : https://juneyeop.github.io/ Languages : native in Korean, fluent in English

Education

BSc in Physics and Mathematics Konkuk University, Seoul

 $(Mar. 2020 \sim Feb. 2025)$

GPA: 4.29 / 4.50 (major : physics 4.39, mathematics 4.25) (1st best out of 130 students)

Thesis : Path-integral approach to Bose-Einstein condensation (ongoing project) Advised by *Junhyun Yeo*

Research Interests

- Mathematical generalisations of quantum field theory : topological and algebraic QFT
- Categorical approaches to topological spaces
- Applications of quantum field theory to condensed matters, especially quantum phase transitions

Awards and Honors

1.

• Merit-based scholarship Konkuk University, 7 times	$(2020 \sim 2023)$
• Dean's List Konkuk University, 5 times	$(2020 \sim 2023)$
• Bronze Medal, 40th University Students Contests of Mathematics Korean Mathematical Society	(Jan. 2022)

Outreach

• Mentorship	
- Mentorship programs of department of physics	$(2022 \sim 2023)$
: As a mentor student, gave lectures on selected topics of mathematical physics.	
(Fourier series and transform, ordinary and partial differential equations, complex analysis)	
• Essays posted on my personal website	$(2023 \sim 2024)$
- The method of steepest descent and asymptotic forms of Airy function	
- Weierstrass factorization theorem	
- Monte-Carlo simulation and its application to 2-dim Ising model	
- Tight-binding approximation	
- Hypergeometric differential equation	
- Integral representation of Bessel function	
- Path-integral Monte-Carlo and its application to the harmonic oscillator	
Chargement which he	

- Grassmann variable
- Why are second-countable Hausdorff spaces important?

 Presentation Solid State Physics I class 20 minutes presentation about tight binding approximation 	(May. 2023)
Volunteer Activities	
N hours at OO institute : teach OO for OO	(<i>Nov. 2024</i>)
- <u>M hours at PP institute</u> <u>: teach PP for PP</u> -	(<i>Oct. 2024</i>)
Undergraduate Internship Program	
• Computational Many-Body Physics Group (GIST, Gwangju Institute of Science and Technology)	(Jan. 2024)
Advised by Donghee Kim	
- Learnt Variational and Path Integral Monte-Carlo techniques.	

- Wrote a Fortran program for which calculates diagonal elements of a density operator

- Reviewed papers which a dumbrate the way to get the excitation spectrum of liquid ⁴He, so called phonon-maxon-roton spectrum, applying VMC and shadow wave function method.

of harmonic oscillators applying PIMC technique.

• Fortran, Python, LaTeX, Matlab

Skills